Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Transl Med ; 15(677): eadc9606, 2023 01 04.
Article En | MEDLINE | ID: mdl-36599005

Degenerative mitral valve (MV) regurgitation (MR) is a highly prevalent heart disease that requires surgery in severe cases. Here, we show that a decrease in the activity of the serotonin transporter (SERT) accelerates MV remodeling and progression to MR. Through studies of a population of patients with MR, we show that selective serotonin reuptake inhibitor (SSRI) use and SERT promoter polymorphism 5-HTTLPR LL genotype were associated with MV surgery at younger age. Functional characterization of 122 human MV samples, in conjunction with in vivo studies in SERT-/- mice and wild-type mice treated with the SSRI fluoxetine, showed that diminished SERT activity in MV interstitial cells (MVICs) contributed to the pathophysiology of MR through enhanced serotonin receptor (HTR) signaling. SERT activity was decreased in LL MVICs partially because of diminished membrane localization of SERT. In mice, fluoxetine treatment or SERT knockdown resulted in thickened MV leaflets. Similarly, silencing of SERT in normal human MVICs led to up-regulation of transforming growth factor ß1 (TGFß1) and collagen (COL1A1) in the presence of serotonin. In addition, treatment of MVICs with fluoxetine not only directly inhibited SERT activity but also decreased SERT expression and increased HTR2B expression. Fluoxetine treatment and LL genotype were also associated with increased COL1A1 expression in the presence of serotonin in MVICs, and these effects were attenuated by HTR2B inhibition. These results suggest that assessment of both 5-HTTLPR genotype and SERT-inhibiting treatments may be useful tools to risk-stratify patients with MV disease to estimate the likelihood of rapid disease progression.


Mitral Valve Insufficiency , Mitral Valve , Humans , Animals , Mice , Mitral Valve/metabolism , Mitral Valve Insufficiency/metabolism , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Fluoxetine/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
2.
Biomaterials ; 289: 121782, 2022 10.
Article En | MEDLINE | ID: mdl-36099713

Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.


Bioprosthesis , Calcinosis , Heart Valve Prosthesis , Acetylcysteine , Animals , Blood Proteins , Cattle , Ethanol/pharmacology , Glutaral , Glycation End Products, Advanced , Pyridoxamine , Rats
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article En | MEDLINE | ID: mdl-35131859

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Heart Valve Diseases/drug therapy , Heart Valve Diseases/therapy , Oxazoles/pharmacology , Pericardium/drug effects , Animals , Biocompatible Materials , Calcification, Physiologic/drug effects , Calcinosis/drug therapy , Calcinosis/metabolism , Calcinosis/therapy , Cell Line , Collagen/metabolism , Ethanol/pharmacology , Glycation End Products, Advanced/metabolism , Heart Valve Diseases/metabolism , Heart Valve Prosthesis , Heterografts/drug effects , Humans , Male , Oxidation-Reduction/drug effects , Pericardium/metabolism , Rats , Rats, Sprague-Dawley , THP-1 Cells
4.
Magn Reson Med ; 87(1): 323-336, 2022 01.
Article En | MEDLINE | ID: mdl-34355815

PURPOSE: Magnetic susceptibility (Δχ) alterations have shown association with myocardial infarction (MI) iron deposition, yet there remains limited understanding of the relationship between relaxation rates and susceptibility or the effect of magnetic field strength. Hence, Δχ and R2∗ in MI were compared at 3T and 7T. METHODS: Subacute MI was induced by coronary artery ligation in male Yorkshire swine. 3D multiecho gradient echo imaging was performed at 1-week postinfarction at 3T and 7T. Quantitative susceptibility mapping images were reconstructed using a morphology-enabled dipole inversion. R2∗ maps and quantitative susceptibility mapping were generated to assess the relationship between R2∗ , Δχ, and field strength. Infarct histopathology was investigated. RESULTS: Magnetic susceptibility was not significantly different across field strengths (7T: 126.8 ± 41.7 ppb; 3T: 110.2 ± 21.0 ppb, P = NS), unlike R2∗ (7T: 247.0 ± 14.8 Hz; 3T: 106.1 ± 6.5 Hz, P < .001). Additionally, infarct Δχ and R2∗ were significantly higher than remote myocardium. Magnetic susceptibility at 7T versus 3T had a significant association (ß = 1.02, R2 = 0.82, P < .001), as did R2∗ (ß = 2.35, R2 = 0.98, P < .001). Infarct pathophysiology and iron deposition were detected through histology and compared with imaging findings. CONCLUSION: R2∗ showed dependence and Δχ showed independence of field strength. Histology validated the presence of iron and supported imaging findings.


Magnetic Resonance Imaging , Myocardial Reperfusion Injury , Animals , Iron , Magnetic Phenomena , Magnetics , Male , Myocardial Reperfusion Injury/diagnostic imaging , Swine
6.
Acta Biomater ; 123: 275-285, 2021 03 15.
Article En | MEDLINE | ID: mdl-33444798

Glutaraldehyde cross-linked heterograft tissues, bovine pericardium (BP) or porcine aortic valves, are the leaflet materials in bioprosthetic heart valves (BHV) used in cardiac surgery for heart valve disease. BHV fail due to structural valve degeneration (SVD), often with calcification. Advanced glycation end products (AGE) are post-translational, non-enzymatic reaction products from sugars reducing proteins. AGE are present in SVD-BHV clinical explants and are not detectable in un-implanted BHV. Prior studies modeled BP-AGE formation in vitro with glyoxal, a glucose breakdown product, and serum albumin. However, glucose is the most abundant AGE precursor. Thus, the present studies investigated the hypothesis that BHV susceptibility to glucose related AGE, together with serum proteins, results in deterioration of collagen structure and mechanical properties. In vitro experiments studied AGE formation in BP and porcine collagen sponges (CS) comparing 14C-glucose and 14C-glyoxal with and without bovine serum albumin (BSA). Glucose incorporation occurred at a significantly lower level than glyoxal (p<0.02). BSA co-incubations demonstrated reduced glyoxal and glucose uptake by both BP and CS. BSA incubation caused a significant increase in BP mass, enhanced by glyoxal co-incubation. Two-photon microscopy of BP showed BSA induced disruption of collagen structure that was more severe with glucose or glyoxal co-incubation. Uniaxial testing of CS demonstrated that glucose or glyoxal together with BSA compared to controls, caused accelerated deterioration of viscoelastic relaxation, and increased stiffness over a 28-day time course. In conclusion, glucose, glyoxal and BSA uniquely contribute to AGE-mediated disruption of heterograft collagen structure and deterioration of mechanical properties.


Heart Valve Prosthesis , Animals , Cattle , Collagen , Glucose/pharmacology , Glycation End Products, Advanced , Glyoxal , Heterografts , Serum Albumin , Serum Albumin, Bovine , Swine
7.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Article En | MEDLINE | ID: mdl-32875167

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

8.
Nat Commun ; 11(1): 3273, 2020 06 29.
Article En | MEDLINE | ID: mdl-32601301

Restoration of coronary blood flow after a heart attack can cause reperfusion injury potentially leading to impaired cardiac function, adverse tissue remodeling and heart failure. Iron is an essential biometal that may have a pathologic role in this process. There is a clinical need for a precise noninvasive method to detect iron for risk stratification of patients and therapy evaluation. Here, we report that magnetic susceptibility imaging in a large animal model shows an infarct paramagnetic shift associated with duration of coronary artery occlusion and the presence of iron. Iron validation techniques used include histology, immunohistochemistry, spectrometry and spectroscopy. Further mRNA analysis shows upregulation of ferritin and heme oxygenase. While conventional imaging corroborates the findings of iron deposition, magnetic susceptibility imaging has improved sensitivity to iron and mitigates confounding factors such as edema and fibrosis. Myocardial infarction patients receiving reperfusion therapy show magnetic susceptibility changes associated with hypokinetic myocardial wall motion and microvascular obstruction, demonstrating potential for clinical translation.


Iron/analysis , Myocardial Reperfusion Injury/diagnostic imaging , Aged , Animals , Cross-Sectional Studies , Female , Ferritins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/pathology , Wound Healing
9.
J Mol Cell Cardiol ; 115: 94-103, 2018 02.
Article En | MEDLINE | ID: mdl-29291394

AIMS: Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology. METHODS AND RESULTS: Diseased human MV leaflets were obtained during cardiac surgery for MVP; normal MV leaflets were obtained from heart transplants. MV RNA was used for microarray analysis of MVP patients versus control, highlighting genes that indicate the involvement of 5HTR pathways and extracellular matrix remodeling in MVP. Human MV leaflets were also studied in vitro and ex vivo with biomechanical testing to assess remodeling in the presence of a 5HTR2B antagonist (LY272015). MVP leaflets from Cavalier King Charles Spaniels were used as a naturally acquired in vivo model of MVP. These canine MVP leaflets (N=5/group) showed 5HTR2B upregulation. This study also utilized CB57.1ML/6 mice in order to determine the effect of Angiotensin II infusion on MV remodeling. Histological analysis showed that MV thickening due to chronic Angiotensin II remodeling is mitigated by a 5HTR2B antagonist (LY272015) but not by 5HTR2A inhibitors. CONCLUSION: In humans, MVP is associated with an upregulation in 5HTR2B expression and increased 5HT receptor signaling in the leaflets. Antagonism of 5HTR2B mitigates MVIC activation in vitro and MV remodeling in vivo. These observations support the view that 5HTR signaling is involved not only in previously reported 5HT-related valvulopathies, but it is also involved in the pathological remodeling of MVP.


Mitral Valve Insufficiency/metabolism , Mitral Valve Insufficiency/pathology , Receptor, Serotonin, 5-HT2B/metabolism , Signal Transduction , Angiotensin II , Animals , Biomechanical Phenomena/drug effects , Case-Control Studies , Dogs , Humans , Mice, Inbred C57BL , Mitral Valve/drug effects , Mitral Valve/metabolism , Mitral Valve/pathology , Organic Chemicals/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Signal Transduction/drug effects
...